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Abstract. In this paper, we obtain sharp results for coefficient inequality, closure theorem and other related
results with respect to symmetric for the classes S∗T (α, β, ξ, γ) and CT (α, β, ξ, γ) and shall be denoted by
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1 Introduction and Definitions

Let A denote the class of functions f(z) normalized by

f(z) = z +

∞∑
k=2

akz
k, (1.1)

which are analytic in the open unit disk

U =
{
z : z ∈ C and |z| < 1

}
.

We denote by S∗(α) and C(α) the subclasses of A consisting of all function which are starlike and convex
of order α (0 ≤ α < 1), respectively, in U , that is

S∗(α) =

{
f ∈ S; Re

(
z
f ′(z)

f(z)

)
> α; 0 ≤ α < 1, z ∈ U

}
and

C(α) =

{
f ∈ S; Re

(
1 + z

f ′′(z)

f ′(z)

)
> α; 0 ≤ α < 1, z ∈ U

}
.

We say that the function f(z) is in the class S(α, β, ξ, γ) if and only if∣∣∣∣∣∣ z f ′(z)
f(z) − 1

2ξ
(
z f ′(z)

f(z) − α
)
− γ

(
z f ′(z)

f(z) − 1
)
∣∣∣∣∣∣ < β

for |z| < 1 where 0 < β ≤ 1; 1
2 ≤ ξ ≤ 1; 0 ≤ α ≤ 1

2 ; 1
2 < γ ≤ 1.

A function f is said to belong to the class C(α, β, ξ, γ) if and only if zf ′ ∈ S∗(α, β, ξ, γ) .
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Many researchers have introduced and investigated several subclasses of analytic function class A (see, for
example [6], [7] and [11]). Various subclasses of A were introduced and some geometric properties of these
subclasses were investigated in several studies (see [3], [5] and [12]).

Let T denote the subclass of S consisting of functions of the form

f(z) = z −
∞∑

n=2

anz
n, (an ≥ 0). (1.2)

We denote by S∗T (α, β, ξ, γ) and CT (α, β, ξ, γ) the classes obtained by taking intersection, respectively, of
the classes S(α, β, ξ, γ) and C(α, β, ξ, γ), that is

S∗T (α, β, ξ, γ) = S∗(α, β, ξ, γ) ∩ T and CT (α, β, ξ, γ) = C(α, β, ξ, γ) ∩ T .

These functions are called starlike with respect to symmetric points and were introduced by Shaqsi and Darus
[1], [2], Ghanim and Darus [8], Sakaguchi [9] and Sudharsan et al. [13]. Recently, El-Ashwah and Thomas [4]
have introduced two function classes, namely the class of functions starlike with respect to conjugate points and
the class of functions starlike with respect to symmetric conjugate points.

In this paper, we obtain sharp results for coefficient inequality, closure theorem and other related results
with respect to symmetric for the classes S∗T (α, β, ξ, γ) and CT (α, β, ξ, γ) and shall be denoted by S∗ST (α, β, ξ, γ)
and C∗ST (α, β, ξ, γ).

We say that the function f is in the class S∗ST (α, β, ξ, γ) if and only if∣∣∣∣∣∣ z f ′(z)
f(z)−f(−z) − 1

2ξ
(
z f ′(z)
f(z)−f(−z) − α

)
− γ

(
z f ′(z)
f(z)−f(−z) − 1

)
∣∣∣∣∣∣ < β. (1.3)

Next, we find the coefficient inequality for the class S∗ST (α, β, ξ, γ).

2 Coefficient inequalities

Theorem 2.1 function f ∈ T given by (1.2) is in the class S∗ST (α, β, ξ, γ) if and only if;

∞∑
n=2

[(n− 2)− β(γn− 2γ + 4ξα− 2nξ)] [an] ≤ 4βξ(1− α).

Proof. Suppose,

∞∑
n=2

[(n− 2)− β(γn− 2γ + 4ξα− 2nξ)] [an] ≤ 4βξ(1− α).

From (1.3) we have

|zf ′(z)− (f(z)− f(−z))| −

β |2ξ (zf ′(z)− α (f(z)− f(−z)))− γ (zf ′(z)− (f(z)− f(−z)))| < 0.

Given that ∣∣∣∣∣
∞∑

n=2

(n− 2) |an|

∣∣∣∣∣−

β

∣∣∣∣∣4ξ(1− α) +

∞∑
n=2

(γn− 2γ + 4ξα− 2nξ)

∣∣∣∣∣ < 0
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for |z| = r < 1; then the condition (2.1) is bounded above by

∞∑
n=2

(n− 2) |an| rn − 4βξ(1− α)− β
∞∑

n=2

(γn− 2γ + 4ξα− 2nξ) |an| rn

=

∞∑
n=2

{(n− 2)− β(γn− 2γ + 4ξα− 2nξ)} |an| rn − 4βξ(1− α)

≤
∞∑

n=2

{(n− 2)− β(γn− 2γ + 4ξα− 2nξ)} |an| − 4βξ(1− α) ≤ 0

Therefore f(z) ∈ S∗ST (α, β, ξ, γ).

Now we prove the converse.
Let ∣∣∣∣∣∣ z f ′(z)

f(z)−f(−z) − 1

2ξ
(
z f ′(z)
(f(z)−f(−z)) − α

)
− γ

(
z f ′(z)
f(z)−f(−z) − 1

)
∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∞∑

n=2
(n− 2)anz

n

4ξ(1− α) +
∞∑

n=2
(γn− 2γ + 4ξα− 2nξ)anzn

∣∣∣∣∣∣∣∣ < β

as |Re(z)| ≤ |z| for all z, we have

Re


∞∑

n=2
(n− 2) anz

n

4ξ(1− α) +
∞∑

n=2
(γn− 2γ + 4ξα− 2nξ)anzn

 .

We choose the values of z on real axis such that zf ′(z)
f(z)−f(−z) is real and upon clearing the denominator of above

expression and letting z −→ 1 through real values we obtain

∞∑
n=2

{(n− 2)− β(γn− 2γ + 4ξα− 2nξ)} |an| ≤ 4βξ(1− α).

Corollary 2.2 If f ∈ S∗ST (α, β, ξ, γ), then

|an| ≤
4βξ(1− α)

{(n− 2)− β(γn− 2γ + 4ξα− 2nξ)}
for n = 2, 3, ... .

Equality holds for

f(z) = z − 4βξ(1− α)

{(n− 2)− β(γn− 2γ + 4ξα− 2nξ)}
zn.

Corollary 2.3 If f(z) ∈ S∗ST (α, β, ξ, 1), we get

|an| ≤
4βξ(1− α)

{(n− 2)− β(n− 2 + 4ξα− 2nξ)}
for n = 2, 3, ... .

Equality holds for;

f(z) = z − 4βξ(1− α)

{(n− 2)− β(n− 2 + 4ξα− 2nξ)}
zn.
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Corollary 2.4 If f(z) ∈ S∗ST (α, β, 1, 1), we get

f(z) = z − 4β(1− α)

{(n− 2)− β(4α− n− 2)}
zn.

Equality holds for;

f(z) = z − 4β(1− α)

{(n− 2)− β(4α− n− 2)}
zn.

Corollary 2.5 f(z) ∈ S∗ST (α) if and only if

∞∑
n=2

|(n− 2α) an|zn ≤ (1− α).

Theorem 2.6 A function f given by (1.2) is in CST (α, β, ξ, γ) if and only if

∞∑
n=2

n [(n− 2)− β(γn− 2γ + 4ξα− 2nξ)] |an| ≤ 4βξ(1− α)

Proof. The proof of this theorem is analogous to that of Theorem 1 because a function f(z) ∈ CST (α, β, ξ, γ)
if and only if zf ′ ∈ S∗ST (α, β, ξ, γ) so it is enough that an in the Theorem 1 replace with nan.

Corollary 2.7 If f(z) ∈ CST (α, β, ξ, γ), then

|an| ≤
4βξ(1− α)

n{(n− 2)− β(γn− 2γ + 4ξα− 2nξ)}
for n = 2, 3, ... .

Equality holds for;

f(z) = z − 4βξ(1− α)

n{(n− 2)− β(γn− 2γ + 4ξα− 2nξ)}
zn.

Corollary 2.8 If f(z) ∈ CST (α, β, ξ, 1), we get

|an| ≤
4βξ(1− α)

n{(n− 2)− β(n− 2 + 4ξα− 2nξ)}
for n = 2, 3, ... .

Equality holds for

f(z) = z − 4βξ(1− α)

n{(n− 2)− β(n− 2 + 4ξα− 2nξ)}
zn.

Corollary 2.9 If f(z) ∈ CST (α, β, 1, 1), we get

f(z) = z − 4β(1− α)

n{(n− 2)− β(4α− n− 2)}
zn.

Equality holds for

f(z) = z − 4β(1− α)

n{(n− 2)− β(4α− n− 2)}
zn.

Corollary 2.10 If f(z) ∈ CST (α) that is starlike with respect to symmetric point of order α if and only if

∞∑
n=2

|n(n− 2α) an|zn ≤ (1− α).
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3 Closure Theorem

Theorem 3.1 Let f1(z) = z and

fn(z) = z − 4βξ(1− α)

[(n− 2)− β(n− 2γ + 4ξα− 2nξ)]
zn for n = 2, 3, 4, ... .

Then f(z) ∈ CST (α, β, ξ, γ) if and only if f(z) can be expressed in the forms,

f(z) = f1(z)−
∞∑

n=2

λnfn(z) where λn ≥ 0 and
∑

λn = 1.

Proof. Suppose,

f(z) = z −
∞∑

n=2

λnfn(z)

= z −
∞∑

n=2

4βξ(1− α)

[(n− 2)− β(n− 2γ + 4ξα− 2nξ)]
zn.

Then

∞∑
n=2

λn4βξ(1− α)

[(n− 2)− β(n− 2γ + 4ξα− 2nξ)]
×

[(n− 2)− β(n− 2γ + 4ξα− 2nξ)]

4βξ(1− α)

=

∞∑
n=2

λn = 1− λ1 ≤ 1.

Therefore f(z) ∈ CST (α, β, ξ, γ)

Conversely, suppose f(z) ∈ CST (α, β, ξ, γ) then remark of Theorem 2.1 gives us

|an| ≤
4βξ(1− α)

{(n− 2)− β(γn− 2γ + 4ξα− 2nξ)}
for n = 2, 3, ... .

λn =

[
(n− 2)− β (nγ − 2γ + 4ξα− 2nξ)

4βξ (1− α)

]
|an| .

and

λ1 = 1−
∞∑

n=2

λn.

Then

(z) = −
∞∑

n=2

λnfn(z).
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Corollary 3.2 If f1(z) = z and

fn(z) = z − 4βξ(1− α)

[(n− 2)− β(n− 2 + 4ξα− 2nξ)]
zn for n = 2, 3, 4, ....

Then f(z) ∈ CST (α, β, ξ, 1) if and only if f(z) can be expressed in the form

f(z) = f1(z)−
∞∑

n=2

λnfn(z) where λn ≥ 0 n = 1, 2, ... .

∞∑
n=2

λn = 1.

Corollary 3.3 If f1(z) = z and

fn(z) = z − 4β(1− α)

[(n− 2)− β(n− 2 + 4α− 2n)]
zn for n = 2, 3, 4, ....

Then f(z) ∈ CST (α, β) if and only if f(z) can be expressed in the form

f(z) = f1(z)−
∞∑

n=2

λnfn(z) where λn ≥ 0 n = 1, 2, ... .

∞∑
n=2

λn = 1.

If f1(z) = z and

f(z) = z −
∣∣∣∣ 1n
∣∣∣∣ zn.

Then f(z) ∈ CST (0, 1, 1, 1) if and only if ,f(z) can be expressed in the form

f(z) = f1(z)−
∞∑

n=2

λnfn(z) where λn ≥ 0 n = 1, 2, ...

∞∑
n=2

λn = 1.
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